LIGHTGCL: SIMPLE YET EFFECTIVE GRAPH CONTRASTIVE LEARNING FOR RECOMMENDATION

Xuheng Cai Chao Huang* Lianghao Xia Xubin Ren
Department of Computer Science University of Hong Kong

Department of Computer Science, University of Hong Kong

{rickcai, lhaoxia}@hku.hk chaohuang75gmail.com

xubinrencs@gmail.com

https://github.com/HKUDS/LightGCL

(ICLR-2022)

Reported by Ke Gan

- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

- i) Graph augmentation with random perturbation may lose useful structural information, which misleads the representation learning
- ii) The success of heuristic-guided representation contrasting schemes is largely built upon the view generator, which limits the model generality and is vulnerable to the noisy user behaviors.
- iii) Most of current GNN-based contrastive recommenders are limited by the over-smoothing issue which leads to indistinguishable representations.

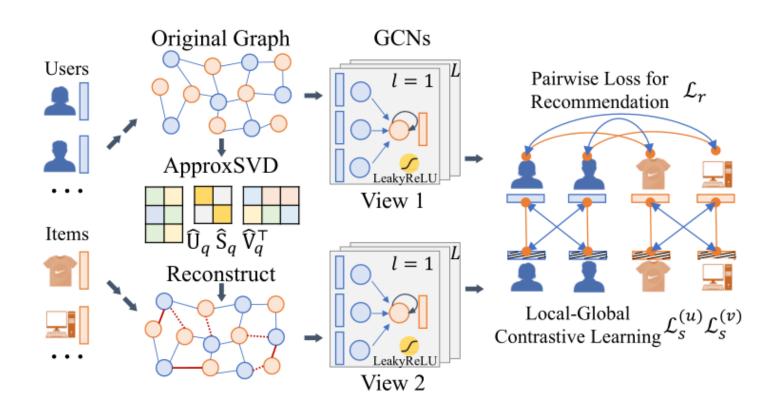


Figure 1: Overall structure of LightGCL.

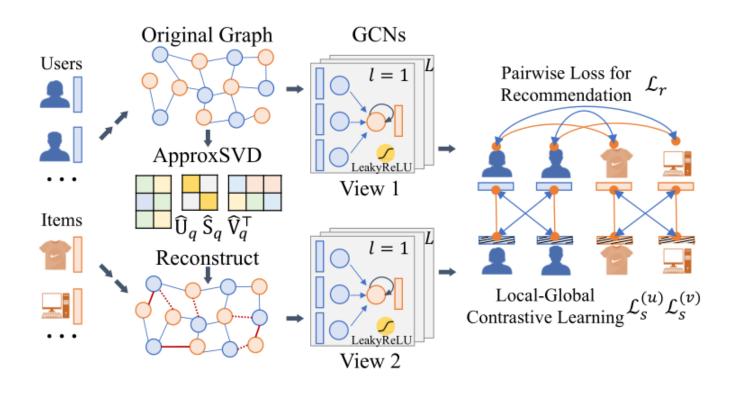


Figure 1: Overall structure of LightGCL.

$$\mathbf{z}_{i,l}^{(u)} = \sigma(p(\tilde{\mathcal{A}}_{i,:}) \cdot \mathbf{E}_{l-1}^{(v)}),$$

$$\mathbf{z}_{j,l}^{(v)} = \sigma(p(\tilde{\mathcal{A}}_{:,j}) \cdot \mathbf{E}_{l-1}^{(u)})$$
(1)

$$egin{aligned} oldsymbol{e}_{i,l}^{(u)} &= oldsymbol{z}_{i,l}^{(u)} + oldsymbol{e}_{i,l-1}^{(u)}, \ oldsymbol{e}_{j,l}^{(v)} &= oldsymbol{z}_{j,l}^{(v)} + oldsymbol{e}_{j,l-1}^{(v)} \end{aligned}$$

$$e_i^{(u)} = \sum_{l=0}^{L} e_{i,l}^{(u)}, e_j^{(v)} = \sum_{l=0}^{L} e_{j,l}^{(v)},$$

$$\hat{y}_{i,j} = e_i^{(u)\mathsf{T}} e_j^{(v)}$$
(3)

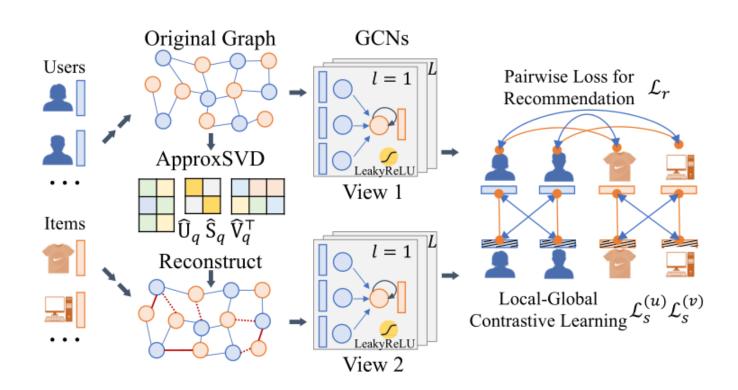


Figure 1: Overall structure of LightGCL.

$$\hat{\mathcal{A}} = \mathbf{U}_{q} \mathbf{S}_{q} \mathbf{V}_{q}^{\top}$$

$$\mathbf{g}_{i,l}^{(u)} = \sigma(\hat{\mathcal{A}}_{i,:} \cdot \mathbf{E}_{l-1}^{(v)}),$$

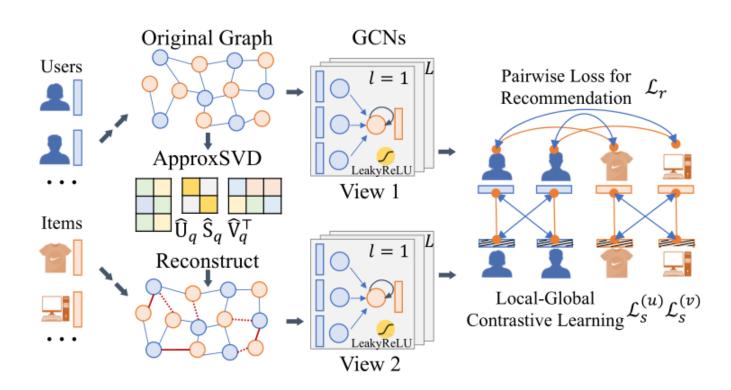
$$\mathbf{g}_{j,l}^{(v)} = \sigma(\hat{\mathcal{A}}_{:,j} \cdot \mathbf{E}_{l-1}^{(u)})$$
(4)

$$\hat{\boldsymbol{U}}_{q}, \hat{\boldsymbol{S}}_{q}, \hat{\boldsymbol{V}}_{q}^{\top} = \operatorname{ApproxSVD}(\mathcal{A}, q),$$

$$\hat{\mathcal{A}}_{SVD} = \hat{\boldsymbol{U}}_{q} \hat{\boldsymbol{S}}_{q} \hat{\boldsymbol{V}}_{q}^{\top}$$
(5)

$$G_{l}^{(u)} = \sigma(\hat{\mathcal{A}}_{SVD} \boldsymbol{E}_{l-1}^{(v)}) = \sigma(\hat{\boldsymbol{U}}_{q} \hat{\boldsymbol{S}}_{q} \hat{\boldsymbol{V}}_{q}^{\top} \boldsymbol{E}_{l-1}^{(v)});$$

$$G_{l}^{(v)} = \sigma(\hat{\mathcal{A}}_{SVD}^{\top} \boldsymbol{E}_{l-1}^{(u)}) = \sigma(\hat{\boldsymbol{V}}_{q} \hat{\boldsymbol{S}}_{q} \hat{\boldsymbol{U}}_{q}^{\top} \boldsymbol{E}_{l-1}^{(u)})$$
(6)



$$\mathcal{L}_{s}^{(u)} = \sum_{i=0}^{I} \sum_{l=0}^{L} -\log \frac{\exp(s(\boldsymbol{z}_{i,l}^{(u)}, \boldsymbol{g}_{i,l}^{(u)}/\tau))}{\sum_{i'=0}^{I} \exp(s(\boldsymbol{z}_{i,l}^{(u)}, \boldsymbol{g}_{i',l}^{(u)})/\tau)}$$
(7)

$$\mathcal{L} = \mathcal{L}_r + \lambda_1 \cdot (\mathcal{L}_s^{(u)} + \mathcal{L}_s^{(v)}) + \lambda_2 \cdot \|\Theta\|_2^2;$$

$$\mathcal{L}_r = \sum_{i=0}^I \sum_{s=1}^S \max(0, 1 - \hat{y}_{i, p_s} + \hat{y}_{i, n_s})$$
(8)

Figure 1: Overall structure of LightGCL.

Table 1: Performance comparison with baselines on five datasets.

Data	Metric	DGCF	HyRec	LightGCN	MHCN	SGL	SimGRACE	GCA	HCCF	SHT	SimGCL	LightGCL	p-val.	impr.
	R@20	0.0466	0.0472	0.0482	0.0503	0.0526	0.0603	0.0621	0.0626	0.0651	0.0718	0.0793	7e-9	10%
Yelp	N@20	0.0395	0.0395	0.0409	0.0424	0.0444	0.0435	0.0530	0.0527	0.0546	0.0615	0.0668	8e-9	8%
>	R@40	0.0774	0.0791	0.0803	0.0826	0.0869	0.0989	0.1021	0.1040	0.1091	0.1166	0.1292	2e-9	10%
	N@40	0.0511	0.0522	0.0527	0.0544	0.0571	0.0656	0.0677	0.0681	0.0709	0.0778	0.0852	2e-9	9%
<u></u>	R@20	0.0944	0.0901	0.0985	0.0955	0.1030	0.0869	0.0896	0.1070	0.1232	0.1357	0.1578	1e-6	16%
Gowalla	N@20	0.0522	0.0498	0.0593	0.0574	0.0623	0.0528	0.0537	0.0644	0.0731	0.0818	0.0935	2e-6	14%
1 0	R@40	0.1401	0.1356	0.1431	0.1393	0.1500	0.1276	0.1322	0.1535	0.1804	0.1956	0.2245	3e-6	14%
	N@40	0.0671	0.0660	0.0710	0.0689	0.0746	0.0637	0.0651	0.0767	0.0881	0.0975	0.1108	3e-6	13%
7	R@20	0.1763	0.1801	0.1789	0.1497	0.1833	0.2254	0.2145	0.2219	0.2173	0.2265	0.2613	1e-9	15%
-10M	N@20	0.2101	0.2178	0.2128	0.1814	0.2205	0.2686	0.2613	0.2629	0.2573	0.2613	0.3106	3e-9	18%
ML-	R@40	0.2681	0.2685	0.2650	0.2250	0.2768	0.3295	0.3231	0.3265	0.3211	0.3345	0.3799	7e-10	13%
2	N@40	0.2340	0.2340	0.2322	0.1962	0.2426	0.2939	0.2871	0.2880	0.3318	0.2880	0.3387	1e-9	17%
	R@20	0.0211	0.0302	0.0319	0.0296	0.0327	0.0381	0.0309	0.0322	0.0441	0.0474	0.0585	2e-7	23%
Amazon	N@20	0.0154	0.0225	0.0236	0.0219	0.0249	0.0291	0.0238	0.0247	0.0328	0.0360	0.0436	2e-6	21%
ğ	R@40	0.0351	0.0432	0.0499	0.0489	0.0531	0.0621	0.0498	0.0525	0.0719	0.0750	0.0933	1e-7	24%
_ <	N@40	0.0201	0.0246	0.0290	0.0284	0.0312	0.0371	0.0301	0.0314	0.0420	0.0451	0.0551	9e-7	22%
	R@20	0.0235	0.0233	0.0225	0.0203	0.0268	0.0222	0.0373	0.0314	0.0387	0.0473	0.0528	3e-5	11%
Tmall	N@20	0.0163	0.0160	0.0154	0.0139	0.0183	0.0152	0.0252	0.0213	0.0262	0.0328	0.0361	1e-4	10%
T _{rr}	R@40	0.0394	0.0350	0.0378	0.0340	0.0446	0.0367	0.0616	0.0519	0.0645	0.0766	0.0852	1e-5	11%
	N@40	0.0218	0.0199	0.0208	0.0188	0.0246	0.0203	0.0337	0.0284	0.0352	0.0429	0.0473	7e-5	10%

Table 2. Combansons of combutational combicativasams baseines	Table 2: Comparisons	of computational of	complexity	against baselines
---	----------------------	---------------------	------------	-------------------

Stage	Computation	LightGCN	SGL	SimGCL	LightGCL
Pre-processing	Normalization SVD	O(E)	O(E) -	O(E) -	O(E) $O(qE)$
Training	Augmentation Graph Convolution BPR Loss InfoNCE Loss	O(2ELd) $O(2Bd)$	$O(2\rho E)$ $O(2ELd + 4\rho ELd)$ $O(2Bd)$ $O(Bd + BMd)$	O(6ELd) $O(2Bd)$ $O(Bd + BMd)$	O[2ELd + 2q(I+J)Ld] $O(2Bd)$ $O[(Bd+BMd)L]$

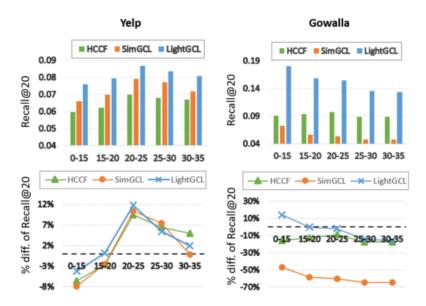


Figure 2: Performance on users of different sparsity degrees, in terms of *Recall* (histograms) and relative *Recall w.r.t* overall performances (charts).

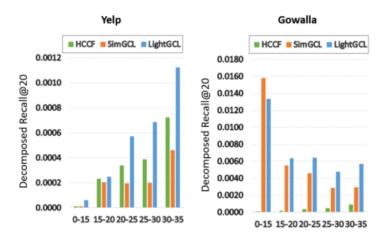


Figure 3: LightGCL's ability to alleviate popularity bias in comparison to SOTA CL-based methods HCCF and SimGCL.

Table 3: Mean Average Distance (MAD) of the embeddings learned by different methods.

Dataset	MHCN	LightGCN	LightGCL	SGL	SimGCL
Yelp	0.8806	0.9469	0.9657	0.9962	0.9956
Gowalla	0.9247	0.9568	0.9721	0.9859	0.9897

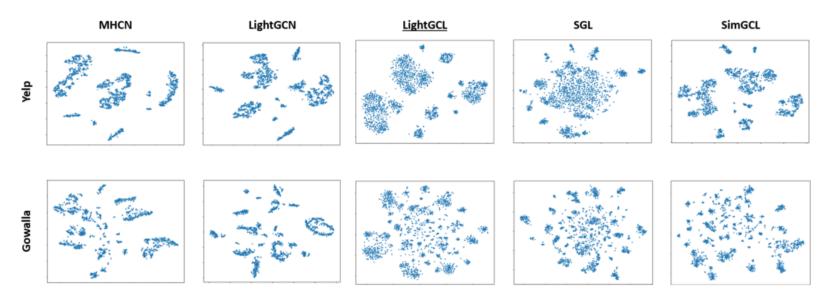


Figure 4: Embedding distributions on Yelp and Gowalla visualized with t-SNE.

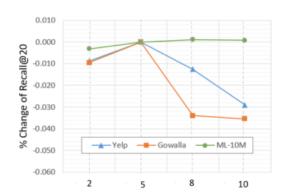


Figure 5: Recall change w.r.t. q.

Table 4: Ablation study on LightGCL.

Variant	Y	elp	Gowalla		
Variant	Recall@20	NDCG@20	Recall@20	NDCG@20	
CL-MF	0.0781	0.0659	0.1561	0.0929	
CL-SVD++	0.0788	0.0666	0.1568	0.0932	
LightGCL	0.0793	0.0668	0.1578	0.0935	

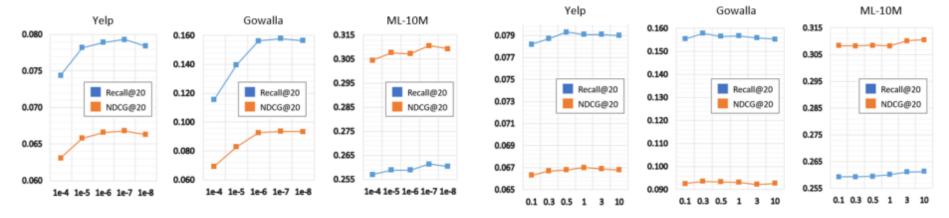


Figure 6: Impact of λ_1 .

Figure 7: Impact of τ

Thank you!